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Exact Solutions for Coupled Einstein, Dirac, Maxwell, 
and Zero-Mass Scalar Fields 

Amar Chandra Patra I and Dipankar Ray 2 
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Coupled equations for Einstein, Maxwell, Dirac, and zero-mass scalar fields 
studied by Krori, Bhattacharya, and Nandi are integrated for plane-symmetric 
time-independent case. It is shown that solutions do not exist for the plane- 
symmetric time-dependent case. 

1. I N T R O D U C T I O N  

In a recent paper,  Krori  et al. (1983) reduced the field equat ions for 
E ins te in -Maxwel l -Di rac  zero-mass scalar fields for t ime- independent  and 
t ime-dependent  cases to two sets of  coupled differential equations.  They 
gave some part icular  solutions for the t ime- independent  case and indicated 
how some solutions for the t ime-dependent  case could be found.  In  the 
present  paper  the coupled  equations for both  the t ime- independent  and 
t ime-dependent  cases are integrated. 

2. F I E L D  E Q U A T I O N S  

The field equat ions o f  the Eins te in-Maxwel l -Di rac-mass less  scalar 
field are 

R ~  - � 8 9  = - 8 ~ ' ( E ~  + S ~  + T ~ )  (2.1) 

FTp =0 (2.2) 
R~0;~ + F0~;t3 + F~;t~ = 0 (2.3) 

y~'V~,qJ = 0 (2.4) 

g~'~b;.~ = 0 (2.5) 
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where the energy-momentum tensors for electromagnetic, Dirac, and scalar 
fields are, respectively, 

E ~ v  = o~ 1 ~ -F~.,~F~ +zg~..F,~,~F (2.6) 

T.~ = �88 + #.,+y~V.O 

- (V~,O+)y~0 - (V.~p+) y.~b] (2.7) 

S~,~ = c/);~.~.,,-�89 lmdp,lqb,m) (2.8) 

We use units in which h = r = 1. We adopt the conventions of Jauch 
and Rohrlich (1976) for Dirac y matrices and notations of Brill and Wheeler 
(1957) with regard to 0 +, 0" ,  and 7uq,. 

Krori et al. (1983) considered the plane-symmetric line element 

ds 2 = e2"( dt  z - dx  2 ) - eZ~( dy2 + dz  2) (2.9) 

where u and v are functions of x alone for both time-independent and 
time-dependent Dirac field. 

3. TIME-INDEPENDENT DIRAC FIELD 

3.1. Equations 

When the Dirac field ~b is time-independent, equations (2.4) and (2.9) 
give 

0 = e-(~+u/2)0o (3.1) 

where 0o is a constant spinor. 
The nonvanishing components of T~  are 

7"20 = �88 e-"  ( V,1 -- U,l ) @+ ,)/1 2 ,~0~j (3.2) 

T3o = �88 e-U (v,1 --  U, l )  ~b+'YLYa'Y~ (3.3) 

where a comma denotes differentiation with respect to x. 
Since R2o = R3o = 0 ,  this implies that 

Teo = T3o = 0 (3.4) 

Equations (3.2)-(3.4) give 

where ao is a constant. 

(1 / 
+1 

~bo = ao i 

\ •  

(3.5) 
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Thus,  q~ is ob ta ined  f rom equat ion (3.1) when  u and v are the ones 

appear ing  in (2.9). 
Equat ions  (2.2)-(2.4) give the e lec t romagnet ic  field, 

Fol = cl e -2~, F23 = c2 e -2~ (3.6) 

where  c~ and  c2 are constants .  
With the help of  (2.9), equat ion (2.1) reduces to 

,i),12 +2UlVl=ae2U-4V+be-4V, , 

2/),11 --  2U,lV,~ + 3/)~1 = a e 2" 4v __ b e - 4 v  

Here  

2 ~ - - a  e 2 u - 4 v  - -  b e - 4 v  
U,ll  -~ /),11 2r /),1 

(3.7) 

(3.8) 

(3.9) 

Therefore  

3.2. Solutions 

Since u and v are funct ions of  x alone,  we can take 

u=u(v)  

//,1 ~ /'/v/),l 

U,1 1 = UvvV21 -]- Uv/),l 1 

Then one can reduce equat ions  (3.7)-(3.9) to 

(2u~ + 1)v~ = a e 2u -4v  + b e - 4 v  (3.12) 

2Vll + (3 -- 2u~) v,21 = a e 2u-4~ - -  b e - 4 v  (3.13) 

( U  v + 1)V,l I + (Uvv  + 1)vYl = " a  e 2 u - 4 v  - -  b e - 4 v  ( 3 . 1 4 )  

To solve the coupled  equat ions  (3.12)-(3.14) one can proceed  as follows: 
2 Eliminat ing v~ and v l~ f rom (3.12)-(3.14), one gets 

( a  e 2 u + b ) u ~ + 2 a  e 2 U u 2 ~ + ( 3 u ~ +  1)a e 2u = 0  (3.15) 

a = -47 r ( c~+  c22) (3.10) 

b =47rd 2 (3.11) 

where  d is a constant.  
Krori  e t  al .  (1983) give some par t icular  solutions of  equat ions 

(3.7)-(3.9). We present  here the general  solutions of  the same equations.  
Once u and  v are obta ined,  ~0 can be ob ta ined  f rom (3.1) and  (3.5). 
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In tegra t ing (3.15), one obta ins  

( K  2 - b - a e 2u) + K ( K  2 - b - a e2U) 1/2 
(3.16) uv - a e 2" + b 

where  K is a constant  o f  integration.  
Again,  integrat ing (3.16), one easily gets 

e2 o _ K I [ ( K  2 - b)1/2 + ( K  2 - b - a e2U)l /2]  g 
(a  e2U) g+l (3.17) 

where  K1 is a constant  o f  integrat ion and 

g = + 2 K / ( K 2 - b )  ~/2 

Inser t ing the value of  v f rom (3.17) into equa t ion  (3.12) and  integrating,  
one obta ins  

K1 f [ 1 \ g+2 
+ x + K 2 - ( 2 m ) g + 3  J kl+y) dy (3.18) 

where  

[m - (m 2 -  a e2U)l/2] 2 
Y - a e 2" (3.19) 

K2 is a cons tant  o f  in tegra t ion and  m 2= K 2 -  b. 
Putt ing (3.17) and (3.18) into equat ions  (3.12)-(3.14),  one can check 

that  all the equat ions  are satisfied. Hence  the comple te  set o f  solut ions of  
equat ions  (3.7)-(3.9) is given by (3.17) and  (3.18). 

Note  that  (3.17) and  (3.18) can also be ob ta ined  f rom equat ions  (3.12) 
and (3.13) only. Thus,  equa t ion  (3.14) is really superfluous.  

4. T I M E - D E P E N D E N T  D I R A C  FIELD 

4.1. Equations 

We assume  that  the Di rac  field ~b is a funct ion of  x and t and  without  
any  loss o f  general i ty  we choose  

q, = tPo(X) e -i'~ (4.1) 

where  Oo(X) is a sp inor  and  o) is a real constant .  
Equat ions  (2.4), (2.9), and  (4.1) give 

= e x p [ -  (v + u / 2) ] (cos o)x + i3' ~ 3, 0 sin w x )  

x [ e x p ( - i m t ) ] O ~  (4.2) 

where  Oc is an arbi t rary cons tant  spinor.  
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The nonvanishing components  of  T~. are 

Too = T11 = �88 e-Uq'+ ( 4iwy~ 

Tlo = Tol =�88 

T2o = To2 = l e - . ~ + [ _ 2 i w y 2 +  ,)/1 ,)/2,)/0(V,1 -- 1../,1)] l/J 

T3 ~ = T o  3 = ~ e-Utp+[_Zitoy3 + yl  y3yO(v,l - / - /1 ) ] f f  / 

Since Ro~ = Ro2 = R o 3  = 0 ,  this implies 

Equat ions  (4.4)-(4.7) give 

Tol = To2 = To3 = 0 

1223 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

f (s/ lit -.'- e - ( v + u / 2 )  imt+iA "t-S os tox + sin tox 
q / •  

=e- iV /2)-  ,+i^[(s+sq=l:q ) c o s ~ o x + ( •  
q+ "+u , , , .  t \ •  

(@+)* = e-(V+~/e)+i'o'-'ai ( s • s q • q) cos wx + ( •  q + s + s) sin wx] 

4.2. Solutions 

From (4.2), one can easily obtain 

i//c= • e 'a (4.8) 

\• 

where s, q, and A are real constants. 
Thus,  @ is obta ined from (4.2) when u and v are the ones appear ing 

in (2.9). 
In this case the field equations are 

I)21 + 2U,1/),1 = a e2U=4V+ b e - 4 v  --  8"/7" e2'* T l l  (4.9) 

2/):1 -2U,lV 1 + 3v~, = a e 2 u - 4 v  - b e -4" + 8"arToo e 2" (4.10) 

2 a e  2 u - 4 v  be  4V (4.11) lg , l l+ / ) ,11  + / ) , 1  = --  

We now seek the solutions of  equations (4.9)-(4.11). Such solutions, if 
obtained,  will give 0 from (3.1) and (3.5). 
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Hence  f rom (4.3), one can get 

Too = T11 = 2 i t o ( s 2 - q  2) e -2~u§ cos 2tox (4.12) 

Insert ing the value o f  Too-- T~ from (4.12) into equat ions (4.9)-(4.11), one 
obtains 

2 �9 , e 2u-4v+ b e-2~ v ~ + 2 u i v l = a  e - a ~  cos 2tox (4.13) 

2v~l - 2u,~ v,~ + 3 v21 = a e 2"-4b _ b e 4v - -  A e -2~ cos 2tox (4.14) 

2 e2U-4v e-4V U,ll + /.),11 + 0,1 = - - a  - b  (4.15) 

where 

A = 167r i to (qe - s  z) (4.16) 

Subtract ing (4.13) f rom (4.14), one obtains 

v,l~ + v2~ - 2u,lv,1 = - b  e -4v - A  e -2v cos 2tox (4.17) 

Also adding  (4.13) to (4.14), one gets 

v 11 + 2v,21 = a e 2u-4v (4.18) 

It was noted by Krori  et al. (1983) that  equat ions (4.15) and (4.18) 
together  are equivalent  to equat ions (3.7)-(3.9) obta ined for the time- 
independent  case. However ,  it is obvious that  equat ions (4.15) and (4.18) 
are necessary but  not  sufficient for  the coupled  equat ions (4.13)-(4.15) to 

be satisfied. 
In fact, it can be shown that the coupled  equat ions (4.13)-(4.15) cannot  

be satisfied unless either a = 0 or A = 0 (p roo f  is given in the Appendix) .  
We note  that in view of  equat ions (3.6) and (3.10), a = 0 means the 

absence o f  the Maxwell  field and in view of  (4.16), A = 0 means the absence 
o f  the Dirac field. Therefore,  there is no solut ion o f  the E ins te in -Maxwel l -  
Dirac zero-mass scalar equat ions for the case under  consideration.  

5. C O N C L U S I O N  

In  summary,  all the t ime- independent  solutions o f  E ins te in -Maxwel l -  
Dirac zero-mass scalar field equations,  i.e., equat ions (2.1)-(2.8), that  are 
o f  p lane-symmetr ic  form, i.e., o f  the form (2.9), are given by (3.17) and 
(3.18). Further,  there is no plane-symmetr ic  t ime-dependent  solution of  the 
Eins te in- .Maxwel l -Dirac  zero-mass scalar field except when either the 
Maxwell  field or  the Dirac field vanishes. 
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APPENDIX 
It will be shown that equations (4.13)-(4.15) admit solutions only if 

either a = 0 o r A = 0  

C a s e  1. Let a = 0, A # 0. Then the solutions of  equations (4.13)-(4.15) 
are given by 

u = ( b~ m 2 -- 1) In( m x  + m l )  + m2x + m3 

v = 1 ln(mx + ml) (A1) 

where m, ml, rn2, and m3 are constants and A cos 2 w x  = ram2. 

C a s e  2. Let a # 0. Then equation (4.18) can be written as 

e 2" = ( 1 / a ) ( v , l l + 2 v 2 1 )  e 4v (A2) 

Differentiating (A2), we find 

I)311+41)31)31+,, 
~/,1-- 2(V,,l+2V2 ) zv l  (A3) 

and 

/')All "q- 4V,1/),11 ] ,  
u,1 = L 2(g.n + 2v~,) .],1 +2v' '1  (a4)  

Using (A2) and (A4) in (4.15), one gets 

[ ~,111 -~- 4/2,'/),11 ] e-4~ 
2(/2,11 +2/),21) J ,1 + 4v,,, + 3v 2, = - b  (AS) 

Substituting the value of  u a from (A3) in (4.17) and simplifying, one gets 

v . , , l v . , + 5 v 2 , v , 1 , - v 2 . . + 6 v  4, = ( v . + 2 v 2 1 ) ( b e - 4 ~ + A  e -2~ cos 2o)x) (A6) 

Differentiating (4.17) and using (A3)-(A5), one obtains, after some calcu- 
lation, 

2 +6/).41 /'),111/),1 + 5 I)21 {),11 -- U,I 1 

% V'I 1 -t- 2/2~1 
2V,1 [2bva e-4~+( be 4V+Ae-2V c o s 2 o J x ) , l ] = 0  (A7) 

Subtracting (A6) from (A7) and simplifying, one obtains 

(Vn + 2v,20~oA e -2v sin 2wx = 0 (AS) 

Now, since a # 0, we see from (4.18) that v,1, +2v,  2, # 0. 
Thus, we observe from (A8) that the only possible case is o2 = 0, and 

w = 0  means A = 0 ,  and consequently equations (4.13)-(4.15) reduce to 
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equa t ions  (3.7)-(3.9)  for  the  t i m e - i n d e p e n d e n t  case,  whose  so lu t ions  are  
comple t e ly  de te rmined .  
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